为什么使用redis?
主要是因为 Redis 具备「高性能」和「高并发」两种特性。
- Redis 具备高性能:假如用户第一次访问 MySQL 中的某些数据。这个过程会比较慢,因为是从硬盘上读取的。将该用户访问的数据缓存在 Redis 中,这样下一次再访问这些数据的时候就可以直接从缓存中获取了,操作 Redis 缓存就是直接操作内存,所以速度相当快
- 单台设备的 Redis 的 QPS是 MySQL 的 10 倍,Redis单机的 QPS 能轻松破 10w,而 MySQL 单机的 QPS 很难破 1w。所以,直接访问 Redis 能够承受的请求是远远大于直接访问 MySQL 的,所以我们可以考虑把数据库中的部分数据转移到缓存中去,这样用户的一部分请求会直接到缓存这里而不用经过数据库。
为什么redis比mysql要快?
- 内存存储:Redis 是基于内存存储的 NoSQL 数据库,而 MySQL 是基于磁盘存储的关系型数据库。由于内存存储速度快,Redis 能够更快地读取和写入数据,而无需像 MySQL 那样频繁进行磁盘 I/O操作。
- 简单数据结构:Redis 是基于键值对存储数据的,支持简单的数据结构。相比之下,MySQL 需要定义结构、索引等复杂的关系型数据结构,因此在某些场景下 Redis 的数据操作更为简单高效,比如 Redis 用哈希表查询, 只需要O(1) 时间复杂度,而MySQL引擎的底层实现是B+Tree,时间复杂度是O(logn)
- 线程模型:Redis 采用单线程模型可以避免了多线程之间的竞争,省去了多线程切换带来的时间和性能上的开销,而且也不会导致死锁问题。
本地缓存和分布式缓存的区别?
本地缓存是指将数据存储在本地应用程序或服务器上,通常用于加速数据访问和提高响应速度。本地缓存通常使用内存作为存储介质,利用内存的高速读写特性来提高数据访问速度。
本地缓存的优势:
- 访问速度快:由于本地缓存存储在本地内存中,因此访问速度非常快,能够满足频繁访问和即时响应的需求。
- 减轻网络压力:本地缓存能够降低对远程服务器的访问次数,从而减轻网络压力,提高系统的可用性和稳定性。
- 低延迟:由于本地缓存位于本地设备上,因此能够提供低延迟的访问速度,适用于对实时性要求较高的应用场景。
本地缓存的不足:
- 可扩展性有限:本地缓存的可扩展性受到硬件资源的限制,无法支持大规模的数据存储和访问。
分布式缓存(Redis)是指将数据存储在多个分布式节点上,通过协同工作来提供高性能的数据访问服务。分布式缓存通常使用集群方式进行部署,利用多台服务器来分担数据存储和访问的压力。
分布式缓存的优势:
- 可扩展性强:分布式缓存的节点可以动态扩展,能够支持大规模的数据存储和访问需求。
- 数据一致性高:通过分布式一致性协议,分布式缓存能够保证数据在多个节点之间的一致性,减少数据不一致的问题。
- 易于维护:分布式缓存通常采用自动化管理方式,能够降低维护成本和管理的复杂性。
分布式缓存的不足:
- 访问速度相对较慢:相对于本地缓存,分布式缓存的访问速度相对较慢,因为数据需要从多个节点进行访问和协同。
- 网络开销大:由于分布式缓存需要通过网络进行数据传输和协同操作,因此相对于本地缓存来说,网络开销较大。
在选择使用本地缓存还是分布式缓存时,我们需要根据具体的应用场景和需求进行权衡。以下是一些考虑因素:
- 数据大小:如果数据量较小,且对实时性要求较高,本地缓存更适合;如果数据量较大,且需要支持大规模的并发访问,分布式缓存更具优势。
- 网络状况:如果网络状况良好且稳定,分布式缓存能够更好地发挥其优势;如果网络状况较差或不稳定,本地缓存的访问速度和稳定性可能更有优势。
高并发场景,Redis单节点+MySQL单节点能有多大的并发量?
- 如果缓存命中的话,4 核心 8g 内存的配置,redis 可以支撑 10w 的 qps
- 如果缓存没有命中的话,4 核心 8g 内存的配置,mysql 只能支持 5000 左右的 qps
redis应用场景是什么?
Redis 是一种基于内存的数据库,对数据的读写操作都是在内存中完成,因此读写速度非常快,常用于缓存,消息队列、分布式锁等场景。
- 缓存: Redis最常见的用途就是作为缓存系统。通过将热门数据存储在内存中,可以极大地提高访问速度,减轻数据库负载,这对于需要快速响应时间的应用程序非常重要。
- 排行榜: Redis的有序集合结构非常适合用于实现排行榜和排名系统,可以方便地进行数据排序和排名。
- 分布式锁: Redis的特性可以用来实现分布式锁,确保多个进程或服务之间的数据操作的原子性和一致性。
- 计数器:由于Redis的原子操作和高性能,它非常适合用于实现计数器和统计数据的存储,如网站访问量统计、点赞数统计等。
- 消息队列: Redis的发布订阅功能使其成为一个轻量级的消息队列,它可以用来实现发布和订阅模式,以便实时处理消息
Redis除了缓存,还有哪些应用?
Redis实现消息队列:
- 使用Pub/Sub模式:Redis的Pub/Sub是一种基于发布/订阅的消息模式,任何客户端都可以订阅一个或多个频道,发布者可以向特定频道发送消息,所有订阅该频道的客户端都会收到此消息。该方式实现起来比较简单,发布者和订阅者完全解耦,支持模式匹配订阅。但是这种方式不支持消息持久化,消息发布后若无订阅者在线则会被丢弃;不保证消息的顺序和可靠性传输。
- 使用List结构:使用List的方式通常是使用 LPUSH 命令将消息推入一个列表,消费者使用 BLPOP 或BRPOP 阻塞地从列表中取出消息(先进先出FIFO)。这种方式可以实现简单的任务队列。这种方式可以结合Redis的过期时间特性实现消息的TTL;通过Redis事务可以保证操作的原子性。但是需要客户端自己实现消息确认、重试等机制,相比专门的消息队列系统功能较弱。
Redis实现分布式锁:
- set nx方式:Redis提供了几种方式来实现分布式锁,最常用的是基于 SET 命令的争抢锁机制。客户端可以使用 SET resource_name lock_value NX PX milliseconds 命令设置锁,其中 NX 表示只有当键不存在时才设置, PX 指定锁的有效时间(毫秒)。如果设置成功,则认为客户端获得锁。客户端完成操作后,解锁的还需要先判断锁是不是自己,再进行删除,这里涉及到 2 个操作,为了保证这两个操作的原子性,可以用 lua 脚本来实现。
- RedLock算法:为了提高分布式锁的可靠性,Redis作者Antirez提出了RedLock算法,它基于多个独立的Redis实例来实现一个更安全的分布式锁。它的基本原理是客户端尝试在多数(大于半数)Redis实例上同时加锁,只有当在大多数实例上加锁成功时才认为获取锁成功。锁的超时时间应该远小于单个实例的超时时间,以避免死锁。该方式可以通过跨多个节点减少单点故障的影响,提高了锁的可用性和安全性。
Redis支持并发操作吗?
- 单个 Redis 命令的原子性:Redis 的单个命令是原子性的,这意味着一个命令要么完全执行成功,要么完全不执行,确保操作的一致性。这对于并发操作非常重要。
- 多个操作的事务:Redis 支持事务,可以将一系列的操作放在一个事务中执行,使用 MULTI、EXEC、DISCARD 和 WATCH 等命令来管理事务。这样可以确保一系列操作的原子性。
Redis分布式锁的实现原理?什么场景下用到分布式锁?
分布式锁是用于分布式环境下并发控制的一种机制,用于控制某个资源在同一时刻只能被一个应用所使用。
Redis 本身可以被多个客户端共享访问,正好就是一个共享存储系统,可以用来保存分布式锁,而且Redis 的读写性能高,可以应对高并发的锁操作场景。Redis 的 SET 命令有个 NX 参数可以实现「key不存在才插入」,
所以可以用它来实现分布式锁:
- 如果 key 不存在,则显示插入成功,可以用来表示加锁成功;
- 如果 key 存在,则会显示插入失败,可以用来表示加锁失败。
基于 Redis 节点实现分布式锁时,对于加锁操作,我们需要满足三个条件。
- 加锁包括了读取锁变量、检查锁变量值和设置锁变量值三个操作,但需要以原子操作的方式完成,所以,我们使用 SET 命令带上 NX 选项来实现加锁;
- 锁变量需要设置过期时间,以免客户端拿到锁后发生异常,导致锁一直无法释放,所以,我们在SET 命令执行时加上 EX/PX 选项,设置其过期时间;
- 锁变量的值需要能区分来自不同客户端的加锁操作,以免在释放锁时,出现误释放操作,所以,我们使用 SET 命令设置锁变量值时,每个客户端设置的值是一个唯一值,用于标识客户端;
而解锁的过程就是将 lock_key 键删除(del lock_key),但不能乱删,要保证执行操作的客户端就是加锁的客户端。所以,解锁的时候,我们要先判断锁的 unique_value 是否为加锁客户端,是的话,才将lock_key 键删除。
可以看到,解锁是有两个操作,这时就需要 Lua 脚本来保证解锁的原子性,因为 Redis 在执行 Lua 脚本时,可以以原子性的方式执行,保证了锁释放操作的原子性。
这样一来,就通过使用 SET 命令和 Lua 脚本在 Redis 单节点上完成了分布式锁的加锁和解锁。
Redis的大Key问题是什么?
Redis大key问题指的是某个key对应的value值所占的内存空间比较大,导致Redis的性能下降、内存不足、数据不均衡以及主从同步延迟等问题。
到底多大的数据量才算是大key?
没有固定的判别标准,通常认为字符串类型的key对应的value值占用空间大于1M,或者集合类型的k元素数量超过1万个,就算是大key。
Redis大key问题的定义及评判准则并非一成不变,而应根据Redis的实际运用以及业务需求来综合评估。
例如,在高并发且低延迟的场景中,仅10kb可能就已构成大key;然而在低并发、高容量的环境下,大key的界限可能在100kb。因此,在设计与运用Redis时,要依据业务需求与性能指标来确立合理的大key阈值。
大Key问题的缺点?
- 内存占用过高。大Key占用过多的内存空间,可能导致可用内存不足,从而触发内存淘汰策略。在极端情况下,可能导致内存耗尽,Redis实例崩溃,影响系统的稳定性。
- 性能下降。大Key会占用大量内存空间,导致内存碎片增加,进而影响Redis的性能。对于大Key的操作,如读取、写入、删除等,都会消耗更多的CPU时间和内存资源,进一步降低系统性能。
- 阻塞其他操作。某些对大Key的操作可能会导致Redis实例阻塞。例如,使用DEL命令删除一个大Key时,可能会导致Redis实例在一段时间内无法响应其他客户端请求,从而影响系统的响应时间和吞吐量。
- 网络拥塞。每次获取大key产生的网络流量较大,可能造成机器或局域网的带宽被打满,同时波及其他服务。例如:一个大key占用空间是1MB,每秒访问1000次,就有1000MB的流量。
- 主从同步延迟。当Redis实例配置了主从同步时,大Key可能导致主从同步延迟。由于大Key占用较多内存,同步过程中需要传输大量数据,这会导致主从之间的网络传输延迟增加,进而影响数据一致性。
- 数据倾斜。在Redis集群模式中,某个数据分片的内存使用率远超其他数据分片,无法使数据分片的内存资源达到均衡。另外也可能造成Redis内存达到maxmemory参数定义的上限导致重要的key被逐出,甚至引发内存溢出。
Redis大key如何解决?
对大Key进行拆分。例如将含有数万成员的一个HASH Key拆分为多个HASH Key,并确保每个Key的成员数量在合理范围。在Redis集群架构中,拆分大Key能对数据分片间的内存平衡起到显著作用。
对大Key进行清理。将不适用Redis能力的数据存至其它存储,并在Redis中删除此类数据。注意,要使用异步删除。
监控Redis的内存水位。可以通过监控系统设置合理的Redis内存报警阈值进行提醒,例如Redis内存使用率超过70%、Redis的内存在1小时内增长率超过20%等。
对过期数据进行定期清。堆积大量过期数据会造成大Key的产生,例如在HASH数据类型中以增量的形式不断写入大量数据而忽略了数据的时效性。可以通过定时任务的方式对失效数据进行清理。
什么是热key?
通常以其接收到的Key被请求频率来判定,例如:
- QPS集中在特定的Key:Redis实例的总QPS(每秒查询率)为10,000,而其中一个Key的每秒访问量达到了7,000。
- 带宽使用率集中在特定的Key:对一个拥有上千个成员且总大小为1 MB的HASH Key每秒发送大量的HGETALL操作请求。
- CPU使用时间占比集中在特定的Key:对一个拥有数万个成员的Key(ZSET类型)每秒发送大量的ZRANGE操作请求。
如何解决热key问题?
- 在Redis集群架构中对热Key进行复制。在Redis集群架构中,由于热Key的迁移粒度问题,无法将请求分散至其他数据分片,导致单个数据分片的压力无法下降。此时,可以将对应热Key进行复制并迁移至其他数据分片,例如将热Key foo复制出3个内容完全一样的Key并名为foo2、foo3、foo4,将这三个Key迁移到其他数据分片来解决单个数据分片的热Key压力。
- 使用读写分离架构。如果热Key的产生来自于读请求,您可以将实例改造成读写分离架构来降低每个数据分片的读请求压力,甚至可以不断地增加从节点。但是读写分离架构在增加业务代码复杂度的同时,也会增加Redis集群架构复杂度。不仅要为多个从节点提供转发层(如Proxy,LVS等)来
实现负载均衡,还要考虑从节点数量显著增加后带来故障率增加的问题。Redis集群架构变更会为监控、运维、故障处理带来了更大的挑战。
如何保证 redis 和 mysql 数据缓存一致性问题?
对于读数据,我会选择旁路缓存策略,如果 cache 不命中,会从 db 加载数据到 cache。对于写数据,我会选择更新 db 后,再删除缓存。
缓存是通过牺牲强一致性来提高性能的。这是由CAP理论决定的。缓存系统适用的场景就是非强一致性的场景,它属于CAP中的AP。所以,如果需要数据库和缓存数据保持强一致,就不适合使用缓存。
所以使用缓存提升性能,就是会有数据更新的延迟。这需要我们在设计时结合业务仔细思考是否适合用缓存。然后缓存一定要设置过期时间,这个时间太短、或者太长都不好:
- 太短的话请求可能会比较多的落到数据库上,这也意味着失去了缓存的优势。
- 太长的话缓存中的脏数据会使系统长时间处于一个延迟的状态,而且系统中长时间没有人访问的数据一直存在内存中不过期,浪费内存。
但是,通过一些方案优化处理,是可以最终一致性的。
针对删除缓存异常的情况,可以使用 2 个方案避免:
- 删除缓存重试策略(消息队列)
- 订阅 binlog,再删除缓存(Canal+消息队列)
消息队列方案
我们可以引入消息队列,将第二个操作(删除缓存)要操作的数据加入到消息队列,由消费者来操作数据。
- 如果应用删除缓存失败,可以从消息队列中重新读取数据,然后再次删除缓存,这个就是重试机制。当然,如果重试超过的一定次数,还是没有成功,我们就需要向业务层发送报错信息了。
- 如果删除缓存成功,就要把数据从消息队列中移除,避免重复操作,否则就继续重试。
重试删除缓存机制还可以,就是会造成好多业务代码入侵。
订阅 MySQL binlog,再操作缓存
「先更新数据库,再删缓存」的策略的第一步是更新数据库,那么更新数据库成功,就会产生一条变更日志,记录在 binlog 里。
于是我们就可以通过订阅 binlog 日志,拿到具体要操作的数据,然后再执行缓存删除,阿里巴巴开源的Canal 中间件就是基于这个实现的。
Canal 模拟 MySQL 主从复制的交互协议,把自己伪装成一个 MySQL 的从节点,向 MySQL 主节点发送dump 请求,MySQL 收到请求后,就会开始推送 Binlog 给 Canal,Canal 解析 Binlog 字节流之后,转换为便于读取的结构化数据,供下游程序订阅使用。
将binlog日志采集发送到MQ队列里面,然后编写一个简单的缓存删除消息者订阅binlog日志,根据更新log删除缓存,并且通过ACK机制确认处理这条更新log
缓存雪崩、击穿、穿透是什么?怎么解决?
- 缓存雪崩:当大量缓存数据在同一时间过期(失效)或者 Redis 故障宕机时,如果此时有大量的用户请求,都无法在 Redis 中处理,于是全部请求都直接访问数据库,从而导致数据库的压力骤增,严重的会造成数据库宕机,从而形成一系列连锁反应,造成整个系统崩溃,这就是缓存雪崩的问题。
- 缓存击穿:如果缓存中的某个热点数据过期了,此时大量的请求访问了该热点数据,就无法从缓存中读取,直接访问数据库,数据库很容易就被高并发的请求冲垮,这就是缓存击穿的问题。
- 缓存穿透:当用户访问的数据,既不在缓存中,也不在数据库中,导致请求在访问缓存时,发现缓存缺失,再去访问数据库时,发现数据库中也没有要访问的数据,没办法构建缓存数据,来服务后续的请求。那么当有大量这样的请求到来时,数据库的压力骤增,这就是缓存穿透的问题
- 缓存雪崩解决方案:
- 均匀设置过期时间:如果要给缓存数据设置过期时间,应该避免将大量的数据设置成同一个过期时间。我们可以在对缓存数据设置过期时间时,给这些数据的过期时间加上一个随机数,这样就保证数据不会在同一时间过期。
- 互斥锁:当业务线程在处理用户请求时,如果发现访问的数据不在 Redis 里,就加个互斥锁,保证同一时间内只有一个请求来构建缓存(从数据库读取数据,再将数据更新到 Redis 里),当缓存构建完成后,再释放锁。未能获取互斥锁的请求,要么等待锁释放后重新读取缓存,要么就返回空值或者默认值。实现互斥锁的时候,最好设置超时时间,不然第一个请求拿到了锁,然后这个请求发生了某种意外而一直阻塞,一直不释放锁,这时其他请求也一直拿不到锁,整个系统就会出现无响应的现象。
- 后台更新缓存:业务线程不再负责更新缓存,缓存也不设置有效期,而是让缓存“永久有效”,并将更新缓存的工作交由后台线程定时更新。
- 缓存击穿解决方案:
- 互斥锁方案,保证同一时间只有一个业务线程更新缓存,未能获取互斥锁的请求,要么等待锁释放后重新读取缓存,要么就返回空值或者默认值。不给热点数据设置过期时间,由后台异步更新缓存,或者在热点数据准备要过期前,提前通知后台线程更新缓存以及重新设置过期时间;
- 缓存穿透解决方案:
- 非法请求的限制:当有大量恶意请求访问不存在的数据的时候,也会发生缓存穿透,因此在 API 入口处我们要判断求请求参数是否合理,请求参数是否含有非法值、请求字段是否存在,如果判断出是恶意请求就直接返回错误,避免进一步访问缓存和数据库。
- 缓存空值或者默认值:当我们线上业务发现缓存穿透的现象时,可以针对查询的数据,在缓存中设置一个空值或者默认值,这样后续请求就可以从缓存中读取到空值或者默认值,返回给应用,而不会继续查询数据库。
- 布隆过滤器:我们可以在写入数据库数据时,使用布隆过滤器做个标记,然后在用户请求到来时,业务线程确认缓存失效后,可以通过查询布隆过滤器快速判断数据是否存在,如果不存在,就不用通过查询数据库来判断数据是否存在。即使发生了缓存穿透,大量请求只会查询 Redis 和布隆过滤器,而不会查询数据库,保证了数据库能正常运行,Redis 自身也是支持布隆过滤器的。
布隆过滤器原理介绍一下
布隆过滤器由「初始值都为 0 的位图数组」和「 N 个哈希函数」两部分组成。当我们在写入数据库数据时,在布隆过滤器里做个标记,这样下次查询数据是否在数据库时,只需要查询布隆过滤器,如果查询到数据没有被标记,说明不在数据库中。
布隆过滤器会通过 3 个操作完成标记:
- 第一步,使用 N 个哈希函数分别对数据做哈希计算,得到 N 个哈希值;
- 第二步,将第一步得到的 N 个哈希值对位图数组的长度取模,得到每个哈希值在位图数组的对应位置。
- 第三步,将每个哈希值在位图数组的对应位置的值设置为 1;
举个例子,假设有一个位图数组长度为 8,哈希函数 3 个的布隆过滤器。
在数据库写入数据 x 后,把数据 x 标记在布隆过滤器时,数据 x 会被 3 个哈希函数分别计算出 3 个哈希值,然后在对这 3 个哈希值对 8 取模,假设取模的结果为 1、4、6,然后把位图数组的第 1、4、6 位置的值设置为 1。
当应用要查询数据 x 是否数据库时,通过布隆过滤器只要查到位图数组的第 1、4、6 位置的值是否全为 1,只要有一个为 0,就认为数据 x 不在数据库中。
布隆过滤器由于是基于哈希函数实现查找的,高效查找的同时存在哈希冲突的可能性,比如数据 x 和数据 y 可能都落在第 1、4、6 位置,而事实上,可能数据库中并不存在数据 y,存在误判的情况。
所以,查询布隆过滤器说数据存在,并不一定证明数据库中存在这个数据,但是查询到数据不存在,数据库中一定就不存在这个数据。
如何设计秒杀场景处理高并发以及超卖现象?
在数据库层面解决
- 在查询商品库存时加排他锁,执行如下语句:在事务中线程A通过
select * from goods for where goods_id=#{id} for update语句给goods_id为#{id}的数据行上了锁。那么其他线程此时可以使用select语句读取数据,但是如果也使用select for update语句加锁,或者使用update,delete都会阻塞,直到线程A将事务提交(或者回滚),其他线程中的某个线程排在线程A后的线程才能获取到锁。 - 更新数据库减库存的时候,进行库存限制条件:
update goods set stock = stock - 1 where goods_id = ? and stock >0这种通过数据库加锁来解决的方案,性能不是很好,在高并发的情况下,还可能存在因为获取不到数据库连接或者因为超时等待而报错。
利用分布式锁
同一个锁key,同一时间只能有一个客户端拿到锁,其他客户端会陷入无限的等待来尝试获取那个锁,只有获取到锁的客户端才能执行下面的业务逻辑。这种方案的缺点是同一个商品在多用户同时下单的情况下,会基于分布式锁串行化处理,导致没法同时处理同一个商品的大量下单的请求。
利用分布式锁+分段缓存
把数据分成很多个段,每个段是一个单独的锁,所以多个线程过来并发修改数据的时候,可以并发的修改不同段的数据
假设场景:假如你现在商品有100个库存,在redis存放5个库存key,形如:
用户下单时对用户id进行%5计算,看落在哪个redis的key上,就去取哪个,这样每次就能够处理5个进程请求这种方案可以解决同一个商品在多用户同时下单的情况,但有个坑需要解决:当某段锁的库存不足,一定要实现自动释放锁然后换下一个分段库存再次尝试加锁处理,此种方案复杂比较高。
利用redis的incr、decr的原子性 + 异步队列
实现思路
- 在系统初始化时,将商品的库存数量加载到redis缓存中
- 接收到秒杀请求时,在redis中进行预减库存(利用redis decr的原子性),当redis中的库存不足时,直接返回秒杀失败,否则继续进行第3步;
- 将请求放入异步队列中,返回正在排队中;
- 服务端异步队列将请求出队(哪些请求可以出队,可以根据业务来判定,比如:判断对应用户是否已经秒杀过对应商品,防止重复秒杀),出队成功的请求可以生成秒杀订单,减少数据库库存(在扣减库存的sql如下,返回秒杀订单详情)
update goods set stock = stock - 1 where goods_id = ? and stock >0 - 用户在客户端申请秒杀请求后,进行轮询,查看是否秒杀成功,秒杀成功则进入秒杀订单详情,否则秒杀失败
这种方案的缺点:由于是通过异步队列写入数据库中,可能存在数据不一致,其次引用多个组件复杂度比较高